If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x=7900
We move all terms to the left:
x^2+2x-(7900)=0
a = 1; b = 2; c = -7900;
Δ = b2-4ac
Δ = 22-4·1·(-7900)
Δ = 31604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31604}=\sqrt{4*7901}=\sqrt{4}*\sqrt{7901}=2\sqrt{7901}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{7901}}{2*1}=\frac{-2-2\sqrt{7901}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{7901}}{2*1}=\frac{-2+2\sqrt{7901}}{2} $
| -4x+12=2x-6 | | 9/10+g=5 | | x-(-8)=31 | | x+0,4=0,6 | | -3/5x+4=-11 | | 12+2a=26 | | k/16+3/43/8=k3 | | 13x-5=21x+11 | | (4x+45)+15=90 | | b+23=180 | | 2x-4x=54 | | 114=3(y+18 | | (2x-3)-5=45 | | X|3+2y=5 | | 7.7+x=10 | | 20+m=92 | | 425+75x=600+70x | | b+52=148 | | 400=3.14*r^2*25 | | 2000+365x=1000+415x | | X=0.25x+0.5 | | H(x)=17+x/6H(-18) | | w+124=180 | | 5^3x=125^2x-5 | | w+124=148 | | 69-5x=65+3x | | n+-6.2=-4.9 | | x+5.2=-9.6 | | 7x+48=0 | | -5+5c=21 | | 8x+24=4x+48 | | D=20+12v |